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SUMMARY 

The lattice Boltzmann method (LBM) is used to simulate flow in an infinite periodic array of octagonal cylinders. 
Results are compared with those obtained by a finite difference (FD) simulation solved in terms of streamfunction 
and vorticity using an alternating direction implicit scheme. Computed velocity profiles are compared along lines 
common to both the lattice Boltzmann and finite difference grids. Along all such slices, both streamwise and 
transverse velocity predictions agree to within 0.5% of the average streamwise velocity. The local shear on the 
surface of the cylinders also compares well, with the only deviations occurring in the vicinity of the comers of the 
cylinders, where the slope of the shear is discontinuous. When a constant dimensionless relaxation time is 
maintained, LBM exhibits the same convergence behaviour as the FD algorithm, with the time step increasing as 
the square of the grid size. By adjusting the relaxation time such that a constant Mach number is achieved, the time 
step of LBM varies linearly with the grid size. The efficiency of LBM on the CM-5 parallel computer at the 
National Center for Supercomputing Applications (NCSA) is evaluated by examining each part of the algorithm. 
Overall, a speed of 13.9 GFLOPS is obtained using 512 processors for a domain size of 2176 x 2176. 
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1. INTRODUCTION 

The lattice Boltanann method (LBM)’-’ is a relatively new, kinetic theory-based, numerical technique 
for studying fluid mechanics. LBM has been used to model various physical phenomena and has been 
shown to produce physically realistic results. Other quantitative studies have endeavoured to establish 
LBM as an alternative scheme for fluid mechanics simulations through comparisons with results 
produced by other more conventional methods.”” 

One obstacle in performing such close comparisons, however, has been the development of general, 
accurate boundary conditions for LBM. The simple ‘bounce-back’ boundary condition used in the 
majority of LBM simulations is a first-order method for modelling stationary  wall^.^^-'^ Skordos16 
suggested a more accurate finite difference scheme to impose boundary and initial conditions. Noble 
er ~ l .  17318 recently proposed consistent hydrodynamic boundary conditions for both hexagonal and 
square two-dimensional grids which yield greater accuracy and do not use expensive finite difference 
operations. It is precisely the imposition of this boundary condition on complex solid boundaries that 
is addressed in this paper. This is a necessary and natural extension of previous investigations &ll,l7,18 
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towards simulating flows around boundaries of complex topology, such as flows in porous media” or 
particulate 

Accurate simulation of complex fluid flows requires a great deal of computational resources. 
Increasingly, massively parallel computers are being used to attack these problems. The two most 
commonly used models in parallel computing applications are the single-instruction/multiple-data 
(SIMD) and multiple-instruction/multiple-data (MIMD) approaches. Under the SIMD model the arrays 
containing the data are divided among the processors. Each processor acts on the same instructions, 
simultaneously operating on the data. Under the MIMD model each processor is independent, running 
its own programme. The SIMD model can significantly decrease execution times when the same 
operation is to be applied to many array elements. In general, parallel techniques are not advantageous, 
however, when a great deal of information must be passed from location to location, since this requires 
interprocessor communication. 

The lattice Boltzmann algorithm is well suited for parallel computation. The evolution equations 
involve many local operations which can be performed simultaneously. The interprocessor commu- 
nication involved is explicit in nature and can therefore be performed using optimized algorithms. Also, 
the slight compressibility of LBM can be viewed as advantageous. Owing to the non-local nature of the 
solution to the Poisson equation, finite difference schemes can spend more than half of the 
computational time solving for the pressure?’ LBM does not, however, require the explicit solution 
of a Poisson equation for pressure. Instead, LBM incorporates a finite speed of sound and the range of 
influence per time step is limited to only a subset of the entire domain. In this regard LBM may be 
considered as a pseudocompressibility method.” In LBM the degree of compressibility can be 
controlled to achieve both efficient and accurate results. 

The objective of this work is to perform a detailed comparison of the accuracy and performance of 
LBM and a finite diffmnce (FD) scheme for steady flows with recirculation and non-trivial boundary 
conditions. The finite difference code22 utilizes an alternating direction implicit algorithm and is 
formulated in terms of streamfimction and vorticity. The problem under consideration is the flow of fluid 
through a periodic array of cylinders which are octagonal in cross-section. The accuracy of LBM is 
established through pointwise comparisons of velocity and shear. The performance of LBM is 
quantitatively evaluated for massively parallel computing architectures. 

2. LATTICE BOLTZMANN THEORY 

2.1. Lattice Bolkmann method with a body force on a square lattice 

In this study an orthogonal, square lattice is utilized in which each node has eight nearest neighbours. 
The lattice incorporates horizontal and vertical links of length Ax and diagonal links of length J2Ax. A 
velocity is associated with each direction, 

2n(i - 1) 2n(i - 1) 
e i =  leil(cos( ),sin( )), i =  1,2 ,..., 8, 

where leil = Ax/At for the horizontal and vertical directions (i= 1, 3, 5 ,  7) and leiJ = ,/2Ax/At for 
the diagonal directions (i = 2, 4, 6, 8). The particle distribution A(x, t )  indicates the probability of 
finding a particle at location x and time t that is moving with velocity e, A rest particle contribution 
&(x, t )  is also included. The primary variables density and velocity are found fiom this particle 
distribution according to 
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C Aei = pu. 
i 

A measure of the kinetic energy ic associated with the lattice velocity is also found according to 

f C ( e i  - ei)A = pic. 

(3) 

(4) 
i 

The difference between this microscopic kinetic energy and the energy of the macroscopic velocity field 
is the internal energy E:  

2 
PE = fC (ei - u)  = pic - fp1ul2. 

i 

The discrete velocity Boltzmann equation is given by 

afi' 
- at + ei V! = Q i ( f ( ~ ,  t))  + Fi, 

where Qi( f(x, t)) is a collision term which accounts for the creation and destruction of particles moving 
with velocity ei due to particle collisions. The term Fi gives rise to a body force and is defined such that 

C Fiei = F, (7) 
i 

where F is the imposed body force. So that the forcing process conserves mass, the body force term is 
also subject to the constraint 

C F i = O .  (8) 
i 

In this study a uniform body force in the x-direction is desired and Fi is chosen as 

FI = F2 = FS = C ,  F4 = F5 = F6 = -C, Fo = F3 = F7 = 0, (9) 

where C is a constant. The constant is determined by substituting the chosen distribution into (7), which 
gives 

hA C Fiei = 6C-x = F = IFIi, 
i At 

where i is a unit vector in the x-direction. The discrete velocity Boltzmann equation is spatially and 
temporally discretized using a Langrangian discretization, which yields 

A(x + eiAt, t + At) =A(x, t )  + Qi(f(x, t))At + FiAt. (1 1) 

Utilizing the l i n b d ,  single-time relaxation model of Bhatnagar et a2.23 applied to lattice Bolt~mann,~ 
the collision operator is written as 

Using this simplification, the lattice Boltzmann evolution equation is written as 
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It is useful to define a dimensionless relaxation time z* = z /A t  and a simplified body force term 
Fi = FiAt. Substituting gives the final form of the lattice Boltzmann evolution equation with a body 
force as 

where 

Using this technique, the solution of the fluid equations is thus reduced to two major steps. First, in a 
collision and forcing step the distributions are modified according to the right-hand side of (14). Second, 
the particle distributions stream to their nearest neighbours. It is noted that the collision and forcing 
calculation is completely local in that all quantities are evaluated at location x. All of the non-local 
interaction takes place during the streaming step and involves only the nearest neighbours. 

The equilibrium particle distribution is selected so that the continuum fluid equations are recovered 
when the Boltrmann transport equation is truncated to its long-wavelength and low-frequency limit. The 
equilibrium distribution utilized here is 

2 2  L? = P(- 7 - -(u 3c2 . u)) ,  

f q = p ( 7 + s ( e i * u ) + - ( e i * u )  1 1  1 
2 6  

1 1  1 
+ - ( e i . u ) + - ( e i . u )  f;"" = P(- 28 1 2 3  8 8  24c2 

where c = Ax/At is the computational speed of sound,r;"9 is the equilibrium distribution of particles 
moving in direction i a n d p  is the equilibrium distribution of rest particles. The kinematic viscosity of 
the fluid, Y, and speed of sound, c,, are given by 

22* - 1 (Ax)z v=-- 
6 At ' 

2.2 Boundary condition implementation 

In order to simulate the cylinder surface using the lattice Boltrmann method, suitable boundary 
conditions in terms of the particle distribution must be imposed. In the consistent hydrodynamic 
approach proposed by Noble et a1.,17,1S a complete set of constraints for the particle distribution is 
developed such that a specified velocity profile is maintained on the boundaries. For LBM utilizing a 
square grid, one of these constraints is developed by requiring that the internal energy be kept 
constant." Another feature of the consistent hydrodynamic approach is that it provides a constraint for 
the density at the boundary in terms of the velocity boundary conditions. 

Some additional nomenclature is needed in order to describe the consistent hydrodynamic boundary 
conditions. First, nodes which lie wholly within the fluid are termed interior or fluid nodes (denoted by 
subscriptn. Second, nodes which lie just outside the boundary of the fluid domain within the wall are 
termed wall nodes (denoted by subscript 16). Last, nodes on the boundary between the fluid mass and the 
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wall are termed boundary nodes (denoted by subscript b). The full set of constraints governing the 
particle distribution function of the boundary node at location x b  is given by 

c fi’(Xb, t 4- At)  = p ( X b ,  t -k At) - c fi’(Xb9 t A t ) ,  (21) 
i=w+b i=f.b-tb 

+ p [ d ( X b ,  t -I- At)  4- g ( X b ,  t + At)] - c 
i=f.b-+b 

(ej *e , ) f i ’ (Xb,  t i- At) ,  (23) 

where the notationf -+ b is used to denote directions from neighbouring fluid nodes to the boundary 
node of interest. Likewise, b -+ b denotes directions from neighbouring boundary nodes to the 
boundary node of interest and w + b denotes directions from neighbouring wall nodes to the boundary 
node of interest. Note that the set of directions b + b includes that of the rest particle distribution which 
is stationary at location x b .  

This boundary condition gives the constraints on the unknown components of the particle distribution 
which are produced by imposing the macroscopic velocity boundary conditions and fixed internal 
energy. Determining the individual unknown components of the distribution requires the application of 
these constraints for a boundary geometry. For an octagonal obstacle, 20 different types of boundary 
orientations are encountered. The explicit equations used to find the density and unknown components 
of the particle distribution are given in the Appendix. 

3. SIMULATIONS OF FLOW THROUGH A PERIODIC ARRAY OF 
OCTAGONAL CYLINDERS 

In this study the flow through a two-dimensional periodic array of infinite parallel octagonal cylinders is 
considered. The flow field is calculated using the lattice Boltzmann method (LBM) and by a finite 
difference (FD) method utilizing an alternating direction implicit algorithm. The FD algorithm is 
formulated in terms of streamfunction and vorticity. The flowfield is computed by simulating the flow 
around a single octagonal cylinder while imposing periodicity at each of the domain boundaries. A 
68 x 68 computational grid used for LBM and a 41 x 41 x 4 grid (four subdomains, each 41 x 41) 
used for the FD calculations are shown in Figure 1. (Finer grids are used in computations. The grids 
shown in Figure 1 demonstrate the structure of each computational domain.) The octagonal cross- 
section provides boundaries which conform to the lattice Botzmann grid which includes both the 
Cartesian directions as well as the diagonal directions. As a result of the 45” angle inherent to the LBM 
grid, the obstacle cross-section is not that of a regular octagon. Instead, the length of the sides which lie 
along the diagonals is J2/1-4 times the length of the sides which lie along the horizontal and vertical 
grid lines. This results in a 1 % difference between the length of the Cartesian and diagonal sides of the 
octagon. 

The two computational grids are quite different in nature, but a number of grid lines are common to 
both grids. These lines correspond to slices through the domain and are referenced with the aid of the 
nine points labelled for each grid in Figure 1. Slice AHG lies at the inlet. Slice BOF cuts vertically 
through the centre of the obstacle. The slice that cuts horizontally through the centre of the obstacle is 
described by HOD. Slice GOC cuts diagonally through the domain from the lower left to the upper right. 
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A B C A C 

H D H D 

Figure 1. Computational grids for the lattice Boltanann method and for the finite difference method using an alternating direction 
implicit scheme. The lattice Boltzmann grid is 68 x 68 and the finite difference grid consists of four subdomains of size 41 x 41. 
The eight labelled points on each grid are used to identify grid l i e s  which are common to both grids. Slice AHG lies at the inlet of 
the domain. Slice BOF is a vertical slice through the centre of the obstacle. Slice GOC is a diagonal slice from the l o w  left to the 

upper right 

In the lattice Boltzmann simulations reported here, the domain is initialized with the equilibrium 
distribution for zero velocity. The solution is marched forward in time until a steady solution is reached. 
In order to determine this, the largest net change in velocity for 500 time steps is computed. When the 
length of this vector divided by the average streamwise velocity is less than the solution is 
considered converged. 

The lattice Boltzmann algorithm is naturally set up for problems involving a known body force. In 
order to impose a desired Reynolds number, a method must be developed for calculating the body force 
needed to maintain the specified average velocity. Force is generally equivalent to a time rate of change 
of momentum. The uniform body force applied over the entire volume gives rise to a total momentum 
increase according to 

Therefore the body force needed to increase the momentum to the level corresponding to the required 
average velocity is given by 

where 3 is the average density of the fluid and A is the total area of the domain, including the obstacle. 
This force is estimated by 

where N, and Ny are the numbers of nodes in the x- and y-directions respectively. The quantity NflUid is 
the total number of nodes in the fluid and is used as an estimate of the area of the fluid. The body force is 
uniform over the entire domain, including both the fluid and the obstacle, but only effects the 
momentum of the fluid. A second approximation is made by increasing the momentum such that the 
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average velocity matches the required amount at the end of the collision and forcing step. Exactly 
matching the Reynolds number requires that the average velocity be matched at the end of the complete 
time step. For all simulations performed here, these approximations provide sufficient accuracy. The 
deviation of the actual Reynolds number from the desired Reynolds number is less than 0.5% for all 
cases examined. 

For the FD simulations an alternating direction implicit algorithm is used to solve for streamfunction 
and vorticity. The initial conditions for each simulation are computed from the inviscid solution for the 
given Reynolds number. The solution is marched forward in time until the changes in both the 
streamfimction and vorticity are less than 5 x The velocity at each grid point is then computed by 
differentiating the streamfunction. 

The behaviour of the flow in a periodic army of cylinders is similar to that for a single cylinder in a 
cross-flow. Figure 2 shows streamlines computed fiom lattice Boltzmann simulations for Reynolds 
numbers Re = 1, 10,50 and 100. The Reynolds numbers for these calculations is based on the average 
streamwise velocity and the width of the octagon. At Re = 1 the flow is nearly symmetric about avertical 
plane through the centre of the cylinder. At Re = 10 the flow is seen to separate and a recirculation 
bubble is formed. The flow now differs from that of a single cylinder in a uniform stream. The wake of 
the upstream obstacle is seen to impinge on the obstacle behind it. Consequently, the velocity along the 
centreline of the obstacles is moving in the direction opposite to the bulk flow. Interesting behaviour 
ensues for Re = 10, as the recirculation bubble constricts behind the obstacle, but then must expand to 
accommodate the next obstacle. As the Reynolds number is increased m e r ,  the wake becomes wider 
and the recirculation is intensified. 

RC=50 Re100 

Figure 2. Chaacter of the flow in a periodic array of octagonal cylinders at Various Reynolds numbers. Shown are streamline8 
computed from lattice Boltzmann results for Reynolds numbers Re = 1 ,  10,50 and 100 
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4. RESULTS 

4.1. Comparison of results for lattice Boltzmann and finite diference solutions 

Comparisons of the velocity profiles and shear are made for the lattice Boltzmann and finite 
difference methods. Pointwise comparisons are performed by plotting the results from a 
204 x 204 LBM simulation and an 81 x 81 x 4 FD simulation along lines common to both grids. 
The Reynolds number for these comparisons is 50 based on the width of the obstacle and U, the average 
streamwise velocity of the fluid. 

4.1. I .  Velociry profile comparison. Figures 3 and 4 show the streamwise and transverse velocity 
components u and 21 plotted along each of the four slices cut through the domain. Since slice HOD lies 
along the centreline of the obstacle, the v-component of velocity is zero by symmetry and is not shown. 
Note that although slice GOC cuts diagonally though the domain, the velocity along this line is plotted 
as a function of the streamwise co-ordinate x. For all slices the LBM results, plotted using full lines, 
and FD results, plotted using broken lines, compare very well. For all slices the lattice Boltzmann and 
FD predictions for u and 21 agree to within 0.5% of U, the average streamwise fluid velocity. The 
solutions are in agreement both near and far from the obstacle and both inside and outside the wake of 
the obstacle. 

4.1.2. Pointwise shear comparison. The viscous shear on the surface of the obstacle is calculated 
and compared. The dimensionless viscous shear imposed by the fluid on the obstacle is found from the 
vorticity by the relation24 

-vn x 0 
q J 2  ' 
2 

3 0.24 

2.5 0.2 

2 0.16 

I 
0.12 il ~ LBM Results 1.5 
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Figure 3. Comparison of lattice Boltzmann and finite difference solutions for streamwise and transverse velocity profiles along 
slices AHG and BOF for Re = 50. All lattice Boltrmann simulation results are shown with full lines. Finite different simulation 

results are indicated by broken lines 
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Figure 4. Comparison of lattice Boltmann and finite difference solutions for streamwise and transverse velocity profiles along 
slices HOD and GOC for Re = 50. The transverse velocity along slice HOD is zero by symmar~ and is not shown. All lattice 

Bolfzmann simulation results are shown with full lines. Finite different simulation results are indicated by broken lines 

where n is the outward-facing n o d  of the obstacle surface, o is the fluid vorticity at the surface and v 
is the kinematic viscosity. The dimensionless shear force per unit area acting in the streamwise direction 
is then given by 

- v n p  
p ’ 

where n,, is the y-component of the outward-facing normal and o is the only non-zero component of the 
vorticity for two-dimensional flows: 

For the FD solution the shear is calculated directly from the computed vorticity. For the LBM solution 
the vorticity is first calculated by differentiating the velocity. The shear is computed at each point on the 
surface of the obstacle and then plotted as a function of angle in Figure 5. The angles are calculated for 
co-ordinate axes fixed at the centre of the obstacle, i.e. 0” corresponds to the stagnation point on the rear 
of the obstacle. 

Once again the results are in close agreement. Along each side of the octagon the predictions by the 
two methods are nearly indistinguishable in the figure. The deviations occur only near the comers of the 
obstacle. At these locations the slope of the shear is discontinuous as a result of the discontinuous slope 
of the obstacle profile. The finite difference solution is locally refined in the vicinity of the comers and 
appears to better resolve the discontinuity. The uniform grid of the lattice Boltzmann method is too 
come to resolve the discontinuity and this results in small ‘wiggles’ in the solution. The ‘wiggles’ are 
confined to small regions near the comers. Another result is that the two methods give differing 
predictions for the shear at the comers. The finite difference solution is also susceptible to difficulties in 
these regions, since the slope of the grid lines is.discontinuous at the comers. The disagreement at the 
comers has relatively little consequences, however, since the shear is acting on an infinitesimal area of 
the comer. 
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Figure 5. Comparison of lattice BoItPnann and finite difference solutions for viscous shear along the surface of the obstacle. 
Discontinuities in the slope of the shear occur at the comers of the obstacle 

4.1.3. Drag coeficient evaluation. The drag coefficient may be computed using the results of 
lattice Boltzmann simulations which include the velocity and pressure at each grid point. The finite 
difference solution is formulated in terms of streamfunction and vorticity, however, and does not give 
the pressure variation. If the pressure field is to be calculated, an additional Poisson equation must be 
solved. The drag may be computed from the lattice Boltzmann simulation results in two different ways. 
First, the shear and pressure forces acting on the obstacle may be integrated to find the total net force. 
Second, the drag may be computed from the magnitude of the body force which is needed to drive the 
fluid. Since the body force is a measure of the force imparted to the fluid to keep it moving at the 
specified Reynolds number, the same force measures the drag imposed on the fluid by the obstacle. 
Thus the drag coefficient in terms of the body force is given by 

where U is the average streamwise fluid velocity, po is the average fluid density, L is the width of the 
obstacle and A is the total area of the domain. It is expected that the prediction based on the body force is 
superior to that based on the integration over the surface, since the integration is susceptible to errors 
caused by the discrete integration invervals and the discontinuous slopes of the pressure and shear. As a 
check, however, the drag coefficient is computed using both methods, and for all cases examined here, 
the predictions agree to within 2%. The drag coefficient calculated from the body force for periodic 
arrays of octagonal cylinders for Reynolds number varying from 0.0 1 to 100 is plotted in Figure 6. At 
low Reynolds number the relationship between the drag Coefficient and the Reynolds number becomes 
linear. In this regime the drag coefficient is inversely proportional to the Reynolds number as expected 
for Stokes flow. 

4.2. Performance of lattice Boltzmann technique and comparison with jinite diFerence pei$ormance 

The performance of the lattice Boltzmann method running on the CM-5 massively parallel computer 
at the National Center for Supercomputing Applications (NCSA) is assessed in this subsection. The 
behaviour of the lattice Boltzmann code as the domain size is increased is compared with that of the 
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Figure 6. Computed drag coefficient as a function of Reynolds number. The drag coefficient is calculated from lattice BoltPnann 
predictions of the body force required to maintain the flow. Also shown is a line depicting the inverse dependence of drag on 

Reynolds number as expected for Stokes flow 

finite difference code utilizing an alternating direction implicit scheme. The performance of LBM is also 
quantified in terms of its ability to effectively utilize parallel computing architectures. 

4.2.1. CM-5 implementation specifics. The lattice Boltzmann code used in this study executes in 
single-instruction/multiple-data (SIMD) mode and is written in CM FORTRAN. CM FORTRAN is a 
parallel version of FORTRAN 90 designed by Thinking Machines. The CM-5 at NCSA has 512 
processors each with 32 Mbytes of memory. Each processor has four vector units giving 
128 MFLOPS peak 64 bit floating-point performance per processor. The processor are grouped in 
partitions, and partition sizes of 32,64, 128, 256 and 512 processors are available. A separate control 
processor is used to give instructions to the processors in the partition. 

The efficiency of the computer programme is highly dependent on the data structures utilized. In this 
implementation of LBM, all arrays, including each component of the particle distribution function, are 
stored with the x- and y-dimensions of the arrays spread across the processors. This causes spatially 
local calculations to be done within each processor, requiring no expensive interprocessor commu- 
nication. 

In general, three types of communication patterns exist: regular communications, irregular 
communications and reductions. Regular communications are the least expensive and are used in the 
streaming process of LBM. Streaming involves the movement of particle populations from one node to 
another in a consistent manner. This is accomplished using the intrinsic function cshzjl, which shifts data 
from each node to a neighbouring node. The cshift function implicitly assumes periodicity and data on 
the edge of the domain wraps around to the opposite side. For greater efficiency, this implementation of 
LBM utilizes thepshift routine from the CM Scientific Subroutine Library (CMSSL), in which multiple 
cshift operations are performed in a single subroutine. Irregular communications involve the movement 
of information in a non-uniform manner and are not required in LBM. Reductions are costly procedures 
and are encountered when information from all the processors is needed for a computation, i.e. a sum of 
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the total momentum in the fluid. This operation is performed in order to calculate the average velocity, 
which is then used to update the body force. 

4.2.2. Computational cost comparison. One measure of the cost of computing a steady state flow 
solution is the number of iterations or time steps required to reach the converged, steady solution. Both 
the LBM and FD algorithms are used to solve the transient equations describing fluid motion. 
Consequently, each updated solution of the discrete equations is associated with a step forward in time, 
6t. If the physical phenomena being modelled develops on a time scale I: the number of iterations 
required to reach the fully developed solution will be of the order of T/At .  Figure 7 shows how the 
required number of iterations varies with the total number of grid points for both the FD algorithm and 
LBM. For the alternating direction implicit algorithm the time step and grid size are related through the 
parameter r according to 

Thus the time step varies as the square of the grid size and the required number of iterations will increase 
linearly with the total number of grid points as seen in the figure. For LBM the time step and grid size 
are related through both the viscosity and the Mach number. The relationship through the viscosity is 
given by (13) and can also be written as 

The relationship through the Mach number can be shown by normalizing the velocity by the 
computational speed of sound 

--5 I B M  - constaat Mach Numbcr 

+ LBM - Constant Viscosity 

L-- I L 

Id Id 

Id t 1 I * I * ,  I 

103 lo' 

Numbcr of Grid Points 

Figure 7. Scaling of iteration count with problem size for the lattice Boltzmann method and the finite difference scheme at a 
constant Reynolds number of 100. For a constant dimensionless relaxation time, LBM exhibits the same scaling behavioar as the 
finite difference algorithm, with the time step going as the square of the grid size. For the case of a constant Mach number the time 

step of LBM varies linearly with the grid size 
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where u is the local velocity and M, is the local computational Mach number. Rearranging, this 
relationship states 

From (32) it is apparent that for a constant viscosity and dimensionless relaxation parameter the time 
step varies as the square of the grid spacing. Thus, as expected, the behaviour of the required number of 
iterations for LBM parallel that of the FD code when a constant dimensionless relaxation time is 
maintained. On the other hand, from (34), if a constant Mach number is maintained, the time step varies 
linearly with the grid size. This causes the number of time steps to increase as the square root of the 
problem size. 

4.2.3. Lattice Boltzmann computational performance by routine and parallel speed-up. The 
lattice Boltzmann algorithm used in this study is divided into four parts with differing levels of parallel 
performance. The fist step involves the iterative calculation of the body force as described earlier. The 
second step involves the collision and forcing process. After computing the local velocity and density 
from the particle distributions, the equilibrium hc t ion  is computed and the right-hand side of (14) is 
calculated. The third step is the streaming process in which this quantity is advected to the nearest 
neighbours. The last step is the calculation of the boundary conditions according to the relations 
described earlier. 

The parallel efficiency of a routine is evaluated by computing the parallel speed-up. The parallel 
speed-up of a routine is defined as the ratio of the computational speed of the routine on a partition of 
one size to the computational speed on a reference size partition. Figure 8 shows the parallel speed-up 
for each part of the LBM scheme for a reference partition size of 32 processors and a fked problem size 
of 272 x 272. Ideally, a process will perform twice as fast when the number of processors is doubled. 
However, this process is mitigated by increasing communication costs and decreased vector lengths. As 
the number of processors is increased for a fked problem size, the regular communications and 
reductions involve increasing amounts of interprocessor communication. Also, the number of 
computations being performed by each processor is decreasing. This reuslts in shorter vector lengths 
and resulting less efficient computation. 

The collision and forcing process and the boundary condition calculation maintain relatively high 
efficiencies as the number of processors is increased, since these routines do not involve any 
interprocessor communication. In fact, the boundary condition calculation exceeds the optimum 
efficiency when using 32 processors. This superefficiency is attributed to the way in which the data 
are spread across the processors. When the number of elements allocated to each vector unit by the 
compiler is not an integral multiple of eight, the vector length on each vector unit, the remainder is 
padded with values which are later discarded. The superefficiency suggests that when using 64 
processors (256 vector units), there is significantly less padding imposed than for 32 processors (128 
vector units) and higher computational efficiency results. The efficiency loss of these routines with 
further increasing the number of processors is due to the decreased vector lengths in the computations. 
The force calculation and streaming routine shows a much greater decrease in efficiency due to 
increased communication. In fact, these processes are eventually seen to require more computer time as 
the number of processors is increased. Another ramification of the changing efficiency is that the 
routines which involve interprocessor communication take up an increasing percentage of the total 
computer time. For a partition size of 32 processors the force calculation, collision and forcing process, 
streaming process and boundary condition calculation take up 7.3%, 3 1.7%, 24.8% and 36.2% of the 
total processing time respectively. For 512 processors the relative percentages are 19.8%, 16.3%, 47.7% 
and 16.2% for the same 272 x 272 domain. 
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Figure 8. Parallel speed-up of each component of the lattice Boltrmann algorithm for a fixed problem size of 272 x 272 

4.2.4. Scalability of lattice Boltzmann method. The scalability of an algorithm is measured by the 
computational speed as the number of processors is increased while simultaneously increasing the size 
of the computational domain. Figure 9 shows the scalability of the lattice Boltzmann code used in this 
study. The speed is calculated for the entire update procedure by dividing the total number of floating 
operations performed in 500 time steps by the total computer time for the 500 steps. A problem size of 
136 x 136 is run on the 32-processor partition. Each time the number of processors is doubled, each 
dimension of the domain size is doubled. For the 2176 x 2176 domain solved using 512 processors, 
an overall speed of 13.9 GFLOPS is obtained. 

0 128 2.56 384 512 

N u m k  of Raruorr 

Figure 9. Scalability of the lattice Bolkmann method. The scalability is measured by the computational speed of the entire lattice 
Boltnnann algorithm as the number of processors and each dimension of the computational domain are simultaneously i n d  
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5. CONCLUSIONS 

The lattice Boltzmann method is shown to be an accurate and efficient scheme for computing steady 
recirculating flows. The flow in a periodic array of octagonal cylinders is modelled using LBM and an 
FD-based scheme. Through comparisons of the computed velocity profiles, LBM is shown to yield 
accurate velocity predictions throughout the domain, both near and far from the solid boundaries and 
both inside and outside the wake. Comparison of the viscous shear also demonstrates the accuracy of 
LBM near boundaries when utilizing the hydrodynamic boundary condition applied here. The 
efficiency of LBM is also established. The controllable compressibility inherent in the method is 
viewed as advantageous, limiting the propagation speed of disturbances and eliminating the need to 
solve a costly Poisson equation. The scaling of the time step with the spatial step is shown to be 
controllable through the computational cost and compressibility error. Overall, the LBM scheme is 
shown to be well suited for parallel computation. The computations involved in the collision and forcing 
process and those involved in the boundary condition calculation are completely local and as a result can 
be efficiently performed using large numbers ofprocessors. The streaming process consists of a uniform 
shift of data and can be implemented using optimized communication algorithms. The lattice 
Balm method can be used to accurately model complex fluid flows with computations in the 
GFLOP range using parallel architectures. 
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APPENDIX 

The explicit equations used on the solid boundaries are developed in this appendix. For an octagonal 
obstacle, 20 different types of boundary orientations are needed. Each vertex requires a different set of 
constraints. Of the eight sides, the two horizontal surface and two vertical surfaces require one set of 
constraints per side. The four diagonal sides, however, require two different sets of constraints per side, 
one for the nodes on the boundary and one for the nodes just outside the boundary whose diagonal 
neighbours lie just inside the obstacle boundary. These off-boundary nodes have incomplete particle 
distributions, since one of their neighbours is a wall node. Unlike the boundary nodes, however, the 
velocity is not known at these points. The constraints given in (2 1 H23)  yield four equations for the four 
unknowns of the density, two components of velocity and the unknown component of the particle 
distribution. The equations, however, are non-linear, coupled, algebraic equations. Rather than 
acquiring the exact solution, it is approximated that the square of the magnitude of the velocity at 
these locations is negligible. This is well justified in the light of the close proximity of the no-slip wall. 
In this case the density and unknown component are computed using (21) and (23). 

For each boundary geometry, equations (21H23) give a constraint for the density as well as 
constraints for each unknown component of the particle distribution. The resulting system of equations 
is solved to give explicit expressions for the density and particle distribution in terms of the velocity at 
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the boundary, the constant internal energy and the contributions of the known components of the 
distribution. The equations for the density and unknown components are of the form 

A=Bp P -  c J; +B,, P U -  c A% ( i=f,b+b ) ( i=f,b-+b ) 

where e, and eiy are the components of e,, are the components of ei in the x- and y-direction respectively 
and Aj and Bj are coefficients specific to each boundary geometry. Also, all quantities are evaluated at 
location x b ,  the boundary position, and time t + At. Table I lists each boundary geometry and the 
unknown particle distribution components for each configuration. Also listed are the coefficients Aj for 
the formulae used to calculate the density from the contributions of the known components of the 
distribution to the density, momentum and kinetic energy. Table I1 lists the coefficients Bj for the explicit 
formulae used to calculate the unknown components of the distribution. 

Table I. Unknown components of the particle distribution and coefficients in (35) used to calculate the density at 
the boundary for each of the 20 boundary configurations 

Identifier Location Unknowns A, A,, A ,  A,, 

Vertex 1 
Vertex 2 
Vertex 3 
Vertex 4 
Vertex 5 
Vertex 6 
Vertex I 
Vertex 8 
Side 1, type 1 
Side 2, type 1 
Side 3, type 1 
Side 4, type 1 
Side 5, type 1 
Side 6, type 1 
Side 7, type 1 
Side 8, type 1 
Side 1, type 2 
Side 3, type 2 
Side 5, type 2 
Side 7, type 2 

x = -1 1 34'Y = -5 
1 x = + , y  = -- 

& < x < 4, y = -x + 12 

-- 3', < x < &, y = f 
-- ; < x < - & , y = x + +  
x = - - l  - l < y < L  

34 12 - -  I < x < - & , y = - x - -  
-I 34 < x < & , y = - 2 1 

j$ < x  < l , y = x - - 1 2  
x= '  ii 

2 - .s;i < Y < i% 

x =  = -i 

2 '  34 

2 17 

17 

Just outside of side 1 
Just outside of side 3 
Just outside of side 5 
Just outside of side 7 

1 -1  0 0 
1 0 -1 0 
1 0 -1 0 
1 1 0 0 
1 1 0 0 
1 0 1 0 
1 0 1 0 
1 -1 0 0 
0 -1 -1 2 
1 0 - 1  0 
0 1 -1  2 
1 1 0 0 
0 1 1 2 
1 0 1 0 
0 -1  1 2 
1 -1 0 0 

-2 0 0 1 
-2 0 0 1 
-2 0 0 1 
-2 0 0 1 
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Table 11. Coefficients in (36) used to calculate the unknown components of the particle distribution for each of the 
20 boundary configurations 

BP BPU BPv B P K  Location unknown 

Vertex 1 fi 1 

Vertex 2 

Vertex 3 

Vertex 4 

Vertex 5 

Vertex 6 

Vertex 7 

Vertex 8 

Side 1, type 1 

Side 2, type 1 

Side 3, type 1 

Side 4, type 1 

Side 5 ,  type 1 

Side 6, type 1 

Side 7, type 1 

Side 8, type 1 

Side 1, type 2 
Side 3, type 2 
Side 5, type 2 
Side 7, type 2 

fi 
h 
h 
h 
h 
h 
fs 
fs 
fa 
fs 
h 
h 
fs 
fs 
fi 
fi 
fi 
h 
fi 
h 
f4 
h 
h 
fs 
fs 
fs 
fa 
fs 
fa 
h 
A5 

h 
fa 
f 7  
fs 
fi 
fa 
fi 
fi 
fi 
h 
fa 
fa 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

-1 
1 

2 

1 
-1 

1 
-2 

2 

1 
-1 

1 

2 

1 
-1 

1 

2 

1 
1 
1 
1 

I 
2 

1 
2 

-- 

-- 

1 

I 
2 

-- 

I 
2 

1 
2 

-- 

-- 

I 
2 

1 
2 

_- 

-- 

0 -1  
0 1 
1 0 

-1 0 
1 0 

-1 0 
0 1 
0 -1  
0 1 
0 -1 

-1 0 
1 0 

-1 0 
1 0 

-1 
0 1 
0 -1 
1 1 

-1 0 
0 2 

0 0 
0 

1 0 
-1 1 

0 -1 
1 0 

0 0 
0 
0 1 

-1 -1 
1 0 

0 
0 0 

0 1 
2 

-1 0 
1 -1 
0 1 
0 
0 0 

1 

0 0 
0 

0 0 
0 0 

1 

1 
2 

-- 

2 

1 
2 

-- 

1 
2 

-- 

1 
2 

-_ 

0 2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

-2 
1 
0 
0 
0 
1 

-2 
1 
0 
0 
0 
1 

-2 
-1  

0 
0 
0 
1 

-2 
1 
0 
0 
0 
0 
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